近年來,新能源接入電網(wǎng)的規(guī)模逐年擴大。以華北電網(wǎng)為例,預計到今年年底新能源裝機規(guī)模約3億千瓦,2025年約4.3億千瓦。受新能源主動支撐能力不足、單機容量小、裝機數(shù)量大等因素影響,監(jiān)測和控制電力系統(tǒng)運行情況的難度增加,給電網(wǎng)可靠穩(wěn)定運行帶來挑戰(zhàn)。
電力系統(tǒng)轉(zhuǎn)動慣量下降,頻率穩(wěn)定水平降低。新能源機組呈現(xiàn)出弱慣性或無慣性特征,在無附加控制的情況下,新能源機組在慣量響應階段并不具備分配系統(tǒng)擾動功率的能力,在一次調(diào)頻階段頻率調(diào)節(jié)能力受限,電力系統(tǒng)頻率變化速度加快、幅度增加;在有附加控制的情況下,受新能源機組運行特性制約,慣量響應及一次調(diào)頻的上調(diào)空間有限。隨著新能源裝機接入占比增加,電網(wǎng)總體慣量、調(diào)頻能力降低,出現(xiàn)故障的風險增加。
新能源機組對電力系統(tǒng)電壓支撐能力不足,系統(tǒng)電壓穩(wěn)定水平下降。新能源場站一般由無功設備提供電壓支撐,由于并網(wǎng)電壓等級較低,難以為500千伏及以上主網(wǎng)提供有效支撐。如果電力系統(tǒng)故障導致新能源機組進入低電壓穿越狀態(tài),新能源機組難以提供系統(tǒng)急需的動態(tài)無功支撐,造成系統(tǒng)電壓穩(wěn)定水平降低,必須通過降低系統(tǒng)運行效率的方式保證穩(wěn)定水平。
具有“雙高”特征的電力系統(tǒng)動態(tài)特性復雜,功角穩(wěn)定特性變化大。電力系統(tǒng)動態(tài)特性發(fā)生較大改變,系統(tǒng)同步穩(wěn)定逐漸由新能源參與轉(zhuǎn)變成主導。電網(wǎng)出現(xiàn)故障后容易產(chǎn)生復雜的動態(tài)交互作用,可能引起傳統(tǒng)機組功角穩(wěn)定問題、新能源機組的同步穩(wěn)定問題以及系統(tǒng)電壓穩(wěn)定問題并存的復雜情況,給電網(wǎng)運行控制造成困難。
電力電子設備大幅增加,寬頻振蕩問題凸顯。直流、新能源機組、無功補償設備等通過電力電子設備接入電網(wǎng),這些元件之間存在多時間尺度交互。電力系統(tǒng)出現(xiàn)振蕩時,振蕩頻率呈現(xiàn)寬頻帶特性,寬頻振蕩發(fā)生的概率大幅增加,易引發(fā)電網(wǎng)失穩(wěn)。寬頻振蕩的抑制、控制和阻斷面臨較大挑戰(zhàn)。
電力系統(tǒng)連鎖故障風險增加。新能源機組耐過流能力差,當電網(wǎng)故障引發(fā)低電壓或高電壓時都會引發(fā)換流器過流,易造成新能源機組脫網(wǎng)。新能源機組控制電壓能力不及傳統(tǒng)機組,暫態(tài)過電壓問題突出,也增加了新能源機組的脫網(wǎng)風險,可能引發(fā)系統(tǒng)頻率和電壓問題,導致連鎖故障。
一、定義及產(chǎn)生原因(LYTCD-9308電力變壓器局放儀適用于各種電力設備)
在電場作用下,絕緣系統(tǒng)中只有部分區(qū)域發(fā)生放電,但尚未擊穿,(即在施加電壓的導體之間沒有擊穿)。這種現(xiàn)象稱之為局部放電。局部放電可能發(fā)生在導體邊上,也可能發(fā)生在絕緣體的表面上和內(nèi)部,發(fā)生在表面的稱為表面局部放電。發(fā)生在內(nèi)部的稱為內(nèi)部局部放電。而對于被氣體包圍的導體附近發(fā)生的局部放電,稱之為電暈。由此 總結(jié)一下局部放電的定義,指部分的橋接導體間絕緣的一種電氣放電,局部放電產(chǎn)生原因主要有以下幾種:
電場不均勻。
電介質(zhì)不均勻。
制造過程的氣泡或雜質(zhì)。經(jīng)常發(fā)生放電的原因是絕緣體內(nèi)部或表面存在氣泡;其次是有些設備的運行過程中會發(fā)生熱脹冷縮,不同材料特別是導體與介質(zhì)的膨脹系數(shù)不同,也會逐漸出現(xiàn)裂縫;再有一些是在運行過程中有機高分子的老化,分解出各種揮發(fā)物,在高場強的作用下,電荷不斷地由導體進入介質(zhì)中, 在注入點上就會使介質(zhì)氣化。
二、模擬電路及放電過程簡介(LYTCD-9308電力變壓器局放儀適用于各種電力設備)
介質(zhì)內(nèi)部含有氣泡,在交流電壓下產(chǎn)生的內(nèi)部放電特性可由圖1—1的模擬電路(a b c等值電路)予以表示;其中Cc是模擬介質(zhì)中產(chǎn)生放電間隙(如氣泡)的電容;Cb代表與Cc串聯(lián)部分介質(zhì)的合成電容;Ca表示其余部分介質(zhì)的電容。
(a) 實際介質(zhì) (b) 模擬電路
I——介質(zhì)有缺陷(氣泡)的部份(虛線表示)
II——介質(zhì)無缺陷部份
圖1—1 表示具有內(nèi)部放電的模擬電路
圖1—1中以并聯(lián)有—對火花間隙的電容Cc來模擬產(chǎn)生局部放電的內(nèi)部氣泡。圖1—2表示了在交流電壓下局部放電的發(fā)生過程。
圖1-2 介質(zhì)內(nèi)單個氣泡在交流電壓下的局部放電過程
U(t)一一外施交流電壓
Uc(t)一一氣泡不擊穿時在氣泡上的電壓
Uc’(t)一一有局部放電時氣泡上的實際電壓
Vc一一氣泡的擊穿電壓
Y r一一氣泡的殘余電壓
Us—局部放電起始電壓(瞬時值)
Ur一一與氣泡殘余電壓v r對應的外施電壓
Ir一一氣泡中的放電電流
電極間總電容Cx=Ca+(Cb×Cc)/(Cb+Cc)=Ca電極間施加交流電壓 u(t)時,氣泡電容Cc上對應的電壓為Uc(t)。如圖2—1所示,此時的Uc(t)所代表的是氣泡理想狀態(tài)下的電壓(既氣泡不發(fā)生擊穿)。
Uc(t)=U(t)×Cb/Cc+Cb
外施電壓U(t)上升時,氣泡上電壓Uc(t)也上升,當U(t)上升到Us時,氣泡上電壓Uc達到氣泡擊穿電壓,氣泡擊穿,產(chǎn)生大量的正、負離子,在電場作用下各自遷移到氣泡上下壁,形成空間電菏,建立反電場,削弱了氣泡內(nèi)的總電場強度,使放電熄滅,氣泡又恢復絕緣性能。這樣的一次放電持續(xù)時間是極短暫的,對一般的空氣氣泡來說,大約只有幾個毫微秒(10的負8次方到10的負9次方秒)。所以電壓Uc(t)幾乎瞬間地從Vc降到Vr,Vr是殘余電壓;而氣泡上電壓Uc‘(t)將隨U(t)的增大而繼續(xù)由Vr升高到Vc時,氣泡再—次擊穿,發(fā)生又—次局部放電,但此時相應的外施電壓比Us小,為(Us-Ur),這是因為氣泡上有殘余電壓Vr的內(nèi)電場作用的結(jié)果。Vr是與氣泡殘余電壓Yr相應的外施電壓,如此反復上述過程,即外施電壓每增加(Us-Ur),就產(chǎn)生一次局部放電.直到前—次放電熄滅后,Uc’(t)上升到峰值時共增量不足以達Vc(相當于外施電壓的增量Δ比(Us-Ur)小)為止。
此后,隨著外施電壓U(t)經(jīng)過峰值Um后減小,外施電壓在氣泡中建立反方向電場,由于氣泡中殘存的內(nèi)電場電壓方向與外電場方向相反,故外施電壓須經(jīng)(Us+Ur))的電壓變化,才能使氣泡上的電壓達到擊穿電壓Vc,(假定正、負方向擊穿電壓Vc相等),產(chǎn)生一次局部放電。放電很快熄滅,氣泡中電壓瞬時降到殘余電壓Vr(也假定正、負方向相同)。外施電壓繼續(xù)下降,當再下降(Us-Ur)時,氣泡電壓就又達到Vc從而又產(chǎn)生一次局部放電。如此重復上述過程,直到外施電壓升到反向蜂值一Um的增量Δ不足以達到(Us-Ur)為止。外施電壓經(jīng)過一Um峰值后,氣泡上的外電場方向又變?yōu)檎较?,與氣泡殘余電壓方向相反,故外施電壓又須上升(Us+Ur)產(chǎn)生第—次放電,熄滅后,每經(jīng)過Us—Ur的電壓上升就產(chǎn)生一次放電,重復前面所介紹的過程。如圖1—2所示。
由以上局部放電過程分析,同時根據(jù)局部放電的特點(同種試品,同樣的環(huán)境下,電壓越高局部放電量越大)可以知道:一般情況下,同一試品在一、三象限的局部放電量大于二、四象限的局部放電量。那是因為它們是電壓的上升沿。(第三象限是電壓負的上升沿)。這就是我們測量中為什么把時間窗刻意擺在一、三象限的原因。
三、測量原理:(LYTCD-9308電力變壓器局放儀適用于各種電力設備)
局放儀運用的原理是脈沖電流法原理,即產(chǎn)生一次局部放電時,試品Cx兩端產(chǎn)生一個瞬時電壓變化Δu,此時若經(jīng)過電Ck耦合到一檢測阻抗Zd上,回路就會產(chǎn)生一脈沖電流I,將脈沖電流經(jīng)檢測阻抗產(chǎn)生的脈沖電壓信息,予以檢測、放大和顯示等處理,就可以測定局部放電的一些基本參量(主要是放電量q)。在這里需要指出的是,試品內(nèi)部實際的局部放電量是無法測量的,因為試品內(nèi)部的局部放電脈沖的傳輸路徑和方向是極其復雜的,因此我們只有通過對比法來檢測試品的視在放電電荷,即在測試之前先在試品兩端注入一定的電量,調(diào)節(jié)放大倍數(shù)來建立標尺,然后將在實際電壓下收到的試品內(nèi)部的局部放電脈沖和標尺進行對比,以此來得到試品的視在放電電荷。
四、表征參數(shù)(LYTCD-9308電力變壓器局放儀適用于各種電力設備)
局部放電是比較復雜的物理現(xiàn)象,必須通過多種表征參數(shù)才能全方位的描繪其狀態(tài),同時局部放電對絕緣破壞的機理也是很復雜的,也需要通過不同的參數(shù)來評定它對絕緣的損害,目前我們只關心兩個基本參數(shù)。
視在放電電荷——在絕緣體中發(fā)生局部放電時,絕緣體上施加電壓的兩端出現(xiàn)的脈動電荷稱之為視在放電電荷,單位用皮庫(pc)表示,通常以穩(wěn)定出現(xiàn)的*大視在放電電荷作為該試品的放電量。
放電重復率——在測量時間內(nèi)每秒中出現(xiàn)的放電次數(shù)的平均值稱為放電重復率,單位為次/秒,放電重復率越高,對絕緣的損害越大。
局放測試的試驗系統(tǒng)接線。
在了解了局部放電的基本理論之后,在本章我們的重點轉(zhuǎn)向?qū)嶋H操作,我們先介紹局部放電測試中常用的三種接法,隨后我們再介紹整個系統(tǒng)的接線電路,*后我們再分別介紹幾種典型的試品的試驗線路。
局部放電測試電路的三種基本接法及優(yōu)缺點。
標準試驗電路,又稱并聯(lián)法。適合于必須接地的試品。
其缺點是高壓引線對地雜散電容并聯(lián)在 CX上,會降低測試靈敏度。
接法的串聯(lián)法,其要求試品低壓端對地浮置。
其優(yōu)點是變壓器入口電容、高壓線對地雜散電容與耦合電容CK并聯(lián),有利于提高試驗靈敏度。缺點是試樣損壞時會損壞輸入單元。
平衡法試驗電路:要求兩個試品相接近,至少電容量為同一數(shù)量級其優(yōu)點是外干擾強烈的情況下,可取得較好抑制干擾的效果,并可消除變壓器雜散電容的影響,而且可做大電容試驗。缺點是須要兩個相似的試品,且當產(chǎn)生放電時,需設法判別是哪個試品放電。
值得提出的是:由于現(xiàn)場試驗條件的限制(找到兩個相似的試品且要保證一個試品無放電不太容易),所以在現(xiàn)場平衡法比較難實現(xiàn),另外,由于采用串聯(lián)法時,如果試品擊穿,將會對設備造成比較大的損害,所以出于對設備保護的想法,在現(xiàn)場試驗時一般采用并聯(lián)法。
采用并聯(lián)法的整個系統(tǒng)的接線原理圖。
該系統(tǒng)采用脈沖電流法檢測高壓試品的局部放電量,由控制臺控制調(diào)壓器和變壓器在試品的高壓端產(chǎn)生測試局放所需的預加電壓和測試電壓,通過無局放藕合電容器和檢測阻抗將局部放電信號取出并送至局部放電檢測儀顯示并判斷和測量。系統(tǒng)中的高壓電阻為了防止在測試過程中試品擊穿而損壞其他設備,兩個電源濾波器是將電源的干擾和整個測試系統(tǒng)分開,降低整個測試系統(tǒng)的背景干擾。
根據(jù)上述原理圖可以看出,局部放電測試的靈敏度和準確度和整個系統(tǒng)密切相關,要想順利和準確的進行局部放電測試,就必須將整個系統(tǒng)考濾周到,包括系統(tǒng)的參數(shù)選取和連接方式。另外,在現(xiàn)場試驗時,由于是驗證性試驗,高壓限流電阻可以省掉。
幾種典型試品的接線原理圖。
(1)電流互感器的局放測試接線原理圖
a電流互感器接線
(2)電壓互感器的局放測試接線原理圖
A.工頻加壓方式接線原理圖
B.高頻加壓方式接線原理圖
為了防止電壓互感器在工頻電壓下產(chǎn)生大的勵磁電流而損壞,高壓電壓互感器一般采取自激勵的加壓方式。在電壓互感器的低壓側(cè)加一倍頻電源,在電壓互感器的高壓端感應出高壓來進行局部放電實驗。這就是通常所說的三倍頻實驗。其接線原理圖如下:
(3)高壓電容器.絕緣子的局放測試接線原理圖
(4) 發(fā)電機的局放測試接線原理圖
(5)變壓器的局部放電測試接線原理圖
我們僅僅是在原理性的總結(jié)了幾種典型試品的接線原理圖,至于各種試品的加壓方式和加壓值的多少,我們在做試驗的時侯要嚴格遵守每種試品的出廠檢驗標準或交接檢驗標準。
隨著新能源占比提高,同步電源占比下降,電力系統(tǒng)可用調(diào)節(jié)能力下降,急需研究新能源主動支撐技術(shù),使新能源場站具備一定的頻率和電壓支撐、抑制寬頻振蕩等能力,以保證電力系統(tǒng)可靠穩(wěn)定運行。
新能源主動支撐技術(shù)需提高新能源場站同步穩(wěn)定能力。新能源場站設備受到單一故障擾動后應具備保持同步的能力,避免因同步失穩(wěn)引發(fā)脫網(wǎng)。例如,可采取功角穩(wěn)定支撐技術(shù),在規(guī)劃設計階段通過優(yōu)化新能源接入系統(tǒng)方案,提升送出系統(tǒng)的功角穩(wěn)定水平。
新能源主動支撐技術(shù)需使新能源場站具備調(diào)頻、調(diào)壓能力。新能源場站應具備不低于同等容量傳統(tǒng)機組的調(diào)頻、調(diào)壓能力。在調(diào)頻能力方面,新能源場站應具備同等容量傳統(tǒng)機組一次調(diào)頻能力、爬坡能力、慣量響應能力。例如可利用頻率慣量支撐技術(shù)改造風電機組控制系統(tǒng),利用轉(zhuǎn)子動能實現(xiàn)虛擬慣量,模擬傳統(tǒng)發(fā)電機一次調(diào)頻特性,實現(xiàn)系統(tǒng)頻率的調(diào)節(jié)。
接入弱電網(wǎng)的新能源場站需具備抑制寬頻振蕩的功能。新能源場站一方面要根據(jù)寬頻振蕩評估結(jié)果,采取新能源控制參數(shù)優(yōu)化等措施,主動降低寬頻振蕩風險水平;另一方面要具備附加阻尼功能,通過場站內(nèi)儲能、靜止無功發(fā)生器(SVG)等設備實現(xiàn)寬頻振蕩抑制。
新能源場站要有足夠的短路容量支撐能力。新能源場站需具備送出95%電量的送出能力,同時滿足多場站短路比要求。例如,可采取加裝分布式調(diào)相機的方式提高新能源場站短路容量,有效提升系統(tǒng)強度。
新能源場站應具備故障穿越能力,更好地適應電網(wǎng)。光伏發(fā)電設備、儲能設備、風機需具備不低于各項標準要求的故障穿越能力,必要時采用零電壓穿越技術(shù),滿足電力系統(tǒng)可靠穩(wěn)定要求。在系統(tǒng)發(fā)生嚴重短路故障場景下,新能源場站實現(xiàn)不脫網(wǎng)持續(xù)運行的時間要滿足系統(tǒng)可靠穩(wěn)定運行要求。例如,雙饋風機可采取直流側(cè)附加泄能支路等控制技術(shù),逐步實現(xiàn)零電壓穿越。新能源場站內(nèi)的電力電子設備應采用具有故障穿越特性的協(xié)調(diào)優(yōu)化技術(shù),統(tǒng)籌兼顧暫態(tài)過電壓和低電壓問題,使新能源的有功、無功功率控制具備電網(wǎng)友好型特征。
新能源主動支撐技術(shù)需提升新能源設備涉網(wǎng)性能。在提高新能源設備耐壓能力方面,采取“新能源+調(diào)相機+避雷器”組合技術(shù),解決瞬時過電壓問題,降低電壓波幅。在提高新能源設備耐流能力方面,采取加裝撬棍電路(Crowbar)、斬波電路(Chopper)硬件保護的方式實現(xiàn)過流限制,通過對換流器進行零電壓穿越改造提升換流器耐流能力。
上海來揚電氣轉(zhuǎn)載其他網(wǎng)站內(nèi)容,出于傳遞更多信息而非盈利之目的,同時并不代表贊成其觀點或證實其描述,內(nèi)容僅供參考。版權(quán)歸原作者所有,若有侵權(quán),請聯(lián)系我們刪除。